Implementation of SA-IS Suffix Array Construction Algorithm
Submitted by: Anirudh Subramanian
UFID : 94453124

Introduction

Suffix arrays are considered to be fundamental data structures in applications such as
data indexing , retrieving , storing and processing. They are particularly used within the
field of bioinformatics to index large strings of genome sequences and querying the
same. Suffix arrays allow for improved space requirements , easier linear time
construction algorithms and improved cache locality. My project was to implement and
analyze SAIS which is a linear time suffix array construction algorithm and compare it
with other linear time construction algorithms KA and KS as is done by the authors of
the paper [1].

Motivation for SAIS

The KS and KA[2, 3] algorithm were published around 2003 and guaranteed a linear
running time for suffix array construction. Both algorithms followed a generic framework
for their solutions which is as mentioned below:

1. The initial input string is reduced to a smaller string so that the original problem
divided into the reduced part and the remaining part.

2. Suffix array of the reduced problem is recursively computed

3. Based on result of previous step suffix array of remaining problem is induced.

4. Finally two arrays are merged as final result.

The KA algorithm and KS algorithm differ in the way they perform the above steps.

In the 1st step the reduction is done by KS algorithm by using triplets such that the
starting index is not equal to 0. Thus the problem size is reduced to 2/3rd of the original
problem in KS. The KA algorithm uses L and S substrings for problem reduction. So for
KA the reduction ratio at max can be 2 by symmetric definition of S and L substrings.

Thus the recurrence relation for KS is expressed as
T(N) = T(2N/3) + O(N)

For KA, the recurrence relation can be expressed as
T(N) = T(N/2) + O(N)

The better reduction ratio suggests that KA will use less space and be faster which is
found true in many performance evaluations.

Although KA runs faster than KS, in practice the design for KA algorithm is far more
complicated than KA which samples and sorts the substring with radix sort. KA uses S
distance lists which adds to design complexity , execution time and memory used.

Thus SAIS tries to overcome the design complexity of KA while maintaining the 2
maximum reduction ratio. For this SAIS uses LMS substrings to reduce the problem and
then does induced sorting of LMS substrings. Below | have described the SAIS
algorithm.

SAIS Algorithm description

suf(S,i) : suffix starting at S[i] and running till the end

S type suffix : A suffix suf(S, i) is said to be S type if suf(S, i) < suf(S, i + 1)
L type suffix : A suffix suf(S, i) is said to be L type if suf(S, i) > suf(S, i+ 1)
SJi] will be L type if suf(S, i) is L type

and SJ[i] will be S type if suf(S, i) is S type

e SJi]is S type if S[i] < S[i + 1] or §[i] = S[i+ 1] and suf(S, i + 1) is S type

e LMS Character : A character SJ[i], iin [1, n-1] is called LMS if S[i] is S type and SJi
- 1]is L type.

e LMS Substring : An LMS Substring is a (i)substring SJi..j] with both SJ[i] and Sj]
being LMS characters and there is no LMS character in the substring fori!=j or
(ii) the sentinel itself

e Ordering

For the induced sorting phase we need to find a way to order the LMS substrings
because we need to name that the end of induced sorting phase to reduce the problem.

The ordering of two LMS substrings are same only if their length type and characters
are same. Otherwise character by character comparison is done and if they are
lexicographically same, compare their types where S type is of higher priority.

SA-IS(S, SA)

> S is the input string;
> SA is the output suffix array of S;
t: array [0..n — 1] of boolean;
Py, Sp: array [0..n1 — 1] of integer; > n1 = ||S1||
B: array [0..||2(S)|| — 1] of integer;
1 Scan S once to classify all the characters as
L- or S-type into ¢;
Scan t once to find all the LMS-substrings in S into Pi;
Induced sort all the LMS-substrings using P, and B;
Name each LMS-substring in S by its bucket
index to get a new shortened string S1;
if Each character in S; is unique
then

= W N

Directly compute SA; from Sy;
else
SA-IS(S1,SA;1); > Fire a recursive call
Induce SA from SA;q;
return

—_ O O 00NN

(———

e Induced Sorting Algorithm

This is a brief overview of the algorithm. For more details please refer to the paper[1]

1. Do the initialization of Suffix Array SA . Set all elements to -1. Do one scan of S
and put all LMS substrings into the buckets. Here the buckets are arranged by
their start character which will be the correct order in the suffix array. So if a
string has ‘BBACDEE$’ then the bucket for A will come first(comprimising of all
substrings starting with A) after which will be B and then C, D and then E in the
suffix array.

2. Induced Sort all the LMS prefixes of L type. Scan SA from left to right, for each
nonnegative item SA[i], if S[SA[i] - 1] is L type put SAJi] - 1 in the respective
position at current head and shift current head right.

3. Induced Sort all LMS prefixes using the L type LMS prefixes in 2.

Time Complexity and Space Complexity for SAIS
The time complexity of SAIS is O(n) where n is size of input string. This is true as the
recurrence equation of SAIS is T(N) = T(N/2) + O(N)

The worst space complexity is O(NlogN) bits because initially space occupied is NLogN
bits and every recursion stage it goes down by half.

Implementation Details
The implementation was done in Java and was compiled and run on Java 1.6.3
e Data structures used

1. count data structure to maintain count of the substrings in buckets. Hash table of
character to count mapping.

2. bucket data structure which holds start or end of bucket depending on the stage.
This is a hash table of character to index mapping.

3. Both these data structures could have been clubbed together but that would have
resulted in consumption of extra memory due to java’'s overhead of an object for
storing housekeeping information.

4. A bitvector instead of Boolean array to store the types i.e. L types or S types
because it is more space efficient.

e Modules used
SAISComputation

This module is the entry point and returns the final suffix array. This does the whole
processing as mentioned in the figure in the algorithm section. Initialization of the bit
vectors, and the substring pointers, and then induced sorting and recursive call of SAIS.
Finally the result array is induced from the sorted array.

induceSort

Does the induced sorting of the array as mentioned above. Follows the three step
algorithm to scan and insert the LMS suffixes, then sorts all L type LMS prefixes into
their buckets and does the same for all prefixes in the third step.

induceSA

The induce SA algorithm works very similar to the induceSort algorithm. Only the first
step differs in a way that it extracts the SA substrings from SA1 instead of putting them

in SA.

Performance Evaluation

A python script was written to do the two tests and log the time and memory usage
using linux time command and memusage command

| did two sets of tests :
Test 1

e Environment : Experiments run on Dual Core AMD Opteron Processor 2 cores,

16GB RAM
e Dataset: Manzinis Large Dataset [4]

e Wanted to test on general applications and not specific to bioinformatics

Results
Fig 1
Execution Time in seconds
Difference
Data Size SAIS Cover KA
rfc| 111MB 70.54 154.33| 117.04
sprot34.dat| 105MB| 67.424 157.1| 119.79
etext99| 100MB| 63.334 124.1| 126.81
chr22.dna| 33MB 19.32 33.18 30.57
rctail96| 109MB 59.86 198.6| 124.71
jdk13c| 66MB| 31.026 104.72 64.61
howto| 38MB| 19.877 37.15 37
w3c2| 99MB| 44.957 148.17 99.09
gcc-3.0.tar| 83MB| 44.632 96.79 75.5

linux-2.4.5.tar| 111MB 57.67 131.25(107.85

Fig 2
Space in MB
Difference

Data Size SAIS Cover KA SAIS/Size
rfc 111 699 1223 976 6.30

sprot34.d
at 105 659 1151 937 6.28
etext99 100 633 1106 913 6.33
chr22.dna 33 208 363 289 6.30
rctail96 109 688 1205 1016 6.31
jdk13c 66 401 733 622 6.08
howto 38 218 415 333 5.74
w3c2 99 627 1090 926 6.33

gcc-3.0.ta
r 83 524 910 726 6.31

linux-2.4.
5.tar 111 691 1221 992 6.23

Mean
ratio 6.22
Deductions

The SAIS algorithm has a reduction ratio of 5 if the probability of S and T types
characters are equal and if this is satisfied it will achieve a very good performance in
terms of execution time.Although it will be O(n) the constant will be small. Because with
large number of characters we can expect characters to be disordered the probability of
S and T type characters will be very similar unless for exceptional cases. Thus we can
observe the good execution time in comparison with KA and KS algorithm.

In regards to memory consumption, the worst case memory consumption is O(nlogn)
but it consumes very less practice in practice.

It is proved in the paper that if the S and T types has almost similar probabilities and
the alphabet size is constant (there can be only constant number of different alphabets)
it will have a space consumption of O(n) + O(1) bits which is what is observed.

Test 2

e Environment : Experiments run on AMDV Processor 64 cores, 512GB RAM
e Dataset: Human chromosome and its copies [5]
e Wanted to test human genome which is specific to bioinformatics

Results

Human CHromosome and its copies
SAIS(Memo | SAIS - Execution
Data Size in MB ry) Time SAIS/Size
chr19.fa.masked 58 336 18.81 5.79
chr18.fa.masked 76 430 34.19 5.66
chr22.dna 33 208 19.32 6.30
chr20.fa.masked 62 356 22.27 5.74
chr21.fa.masked 47 281 17.38 5.98
chr2.fa.masked 237 1487 82.3 6.27
chr1.fa.masked 243 1466 84 6.03
chr3.fa.masked 193 1168 73.2 6.05
chr5.fa.masked 176 1112 54.86 6.32
Mean ratio 6.02

Deductions

The ratio taken here is the sais space consumption / file_size . This shows what is the c in the
space consumption c*n. From the theoretical results we expect it to be better than the
previous tests because there are only 4 alphabets A, C, G, T in this test. Although there is not
a great difference the mean ratio has improved.

Thus the SAIS performs linearly with comparable space requirements for suffix array
constructions in the field of bioinformatics too. The problem still remains that even for a file
size of 2GB the space requirements are too high to run it on a single machine. Thus in
practice suffix array has to be run in a distributed system where array is stored in different
machines and they work together to find a match. If there is a better O(1) extra space
algorithm it would be better suited for very large strings.

References

ieeexplore.ieee.orgl/iel5/12/4358213/05582081.pdf?arnumber=5582081 (SAIS)
http://www.cs.cmu.edu/~guyb/realworld/papersS04/KaSa03.pdf (KS)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.9781 (KA)
http://people.unipmn.it/~manzini/lightweight/corpus/ (Manzini Dataset)
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/ (Human chromosome
and its copies)

akhwbh-=

http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F12%2F4358213%2F05582081.pdf%3Farnumber%3D5582081&sa=D&sntz=1&usg=AFQjCNHxHmx0pF5onr2AD_k1X8dP-ZC4rQ
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.cmu.edu%2F~guyb%2Frealworld%2FpapersS04%2FKaSa03.pdf&sa=D&sntz=1&usg=AFQjCNHuSeSBx7_1Hy6oWs3_PFGlND2PIg
http://www.google.com/url?q=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.83.9781&sa=D&sntz=1&usg=AFQjCNGP_mBRxgKADtsyEWK2SoWFl9-bYQ
http://www.google.com/url?q=http%3A%2F%2Fpeople.unipmn.it%2F~manzini%2Flightweight%2Fcorpus%2F&sa=D&sntz=1&usg=AFQjCNF2CpRrcm_bFK3_Olnenpli-Ia4bg
http://www.google.com/url?q=http%3A%2F%2Fhgdownload.cse.ucsc.edu%2FgoldenPath%2Fhg19%2FbigZips%2F&sa=D&sntz=1&usg=AFQjCNFHu06J6QBrOXCw1DNZeErXli6h7Q

