1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
#include <bits/stdc++.h>
inline char read() { static const int IN_LEN = 1000000; static char buf[IN_LEN], *s, *t; if (s == t) { t = (s = buf) + fread(buf, 1, IN_LEN, stdin); if (s == t) return -1; } return *s++; }
template<class T> inline bool read(T &x) { static bool iosig; static char c; for (iosig = false, c = read(); !isdigit(c); c = read()) { if (c == '-') iosig = true; if (c == -1) return false; } for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0'); if (iosig) x = -x; return true; }
const int OUT_LEN = 10000000; char obuf[OUT_LEN], *oh = obuf;
inline void print(char c) { if (oh == obuf + OUT_LEN) fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf; *oh++ = c; }
template<class T> inline void print(T x) { static int buf[30], cnt; if (x == 0) { print('0'); } else { if (x < 0) print('-'), x = -x; for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 + 48; while (cnt) print((char)buf[cnt--]); } }
inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
typedef unsigned long long ull; typedef unsigned int uint; #define long long long
const int MAXN = 100000; const int MAX_VAL = 30000; uint v[MAXN], bucL[MAX_VAL + 1], bucR[MAX_VAL + 1];
namespace Concurrent {
inline void concurrentSolve(int n, int num1) { register int i, tmp; bucR[MAX_VAL - (v[0] = num1)]++; for (i = 1; i < n; i++) read(tmp), bucR[MAX_VAL - (v[i] = tmp)]++;
bucR[MAX_VAL - v[0]]--; register int minL = v[0], maxL = v[0];
register long ans = 0;
n--; for (i = 1; i < n; i++) { register int last = v[i - 1], cur = v[i]; if (last < minL) minL = last; else if (last > maxL) maxL = last;
bucL[last]++; bucR[MAX_VAL - cur]--;
register int bufx = cur << 1, low = std::max(minL, bufx - MAX_VAL), high = std::min(maxL, bufx - 1); register uint tmp = 0, *p1 = bucL + low, *pr = bucL + high - 14, *p2 = bucR + MAX_VAL - bufx + low; while (p1 <= pr) { tmp += (*p1) * (*p2) + (*(p1 + 1)) * (*(p2 + 1)) + (*(p1 + 2)) * (*(p2 + 2)) + (*(p1 + 3)) * (*(p2 + 3)) + (*(p1 + 4)) * (*(p2 + 4)) + (*(p1 + 5)) * (*(p2 + 5)) + (*(p1 + 6)) * (*(p2 + 6)) + (*(p1 + 7)) * (*(p2 + 7)) + (*(p1 + 8)) * (*(p2 + 8)) + (*(p1 + 9)) * (*(p2 + 9)) + (*(p1 + 10)) * (*(p2 + 10)) + (*(p1 + 11)) * (*(p2 + 11)) + (*(p1 + 12)) * (*(p2 + 12)) + (*(p1 + 13)) * (*(p2 + 13)) + (*(p1 + 14)) * (*(p2 + 14));
p1 += 15, p2 += 15; } while (p1 <= bucL + high) tmp += (*(p1++)) * (*(p2++)); ans += tmp; }
print(ans); }
}
namespace FastFourierTransform {
struct Complex { double r, i;
Complex(double r = 0, double i = 0) : r(r), i(i) {}
inline Complex operator+(const Complex &x) const { return Complex(r + x.r, i + x.i); }
inline Complex operator-(const Complex &x) const { return Complex(r - x.r, i - x.i); }
inline Complex operator*(const Complex &x) const { return Complex(r * x.r - i * x.i, r * x.i + i * x.r); }
inline Complex conj() { return Complex(r, -i); } };
const double PI = acos(-1);
inline void fft(Complex *a, const int n, const int f) { for (register int i = 0, j = 0; i < n; i++) { if (i > j) std::swap(a[i], a[j]); for (register int k = n >> 1; (j ^= k) < k; k >>= 1); } for (register int i = 1; i < n; i <<= 1) { Complex wn(cos(PI / i), f * sin(PI / i)); for (register int j = 0; j < n; j += i << 1) { Complex w(1, 0); for (register int k = 0; k < i; k++, w = w * wn) { Complex x = a[j + k], y = w * a[i + j + k]; a[j + k] = x + y, a[i + j + k] = x - y; } } } if (f == -1) for (register int i = 0; i < n; i++) a[i].r /= n; }
const int MAXN = 700010; Complex a[MAXN], b[MAXN]; int num[MAXN], l[MAXN], r[MAXN], st[MAXN], ed[MAXN]; int n;
inline void solve(int n, int num1) { num[1] = num1; register int max = num1; r[num1]++; for (register int i = 2; i <= n; i++) read(num[i]), max = std::max(max, num[i]), r[num[i]]++; max++; max = (max << 1) - 1; for (FastFourierTransform::n = 1; FastFourierTransform::n <= max; FastFourierTransform::n <<= 1); register int size = 2000; register int m = (n - 1) / size + 1; for (register int i = 1; i <= m; i++) { st[i] = ed[i - 1] + 1; ed[i] = i * size; } ed[m] = n; register long ans = 0; for (register int i = 1; i <= m; i++) { for (register int j = st[i]; j <= ed[i]; j++) r[num[j]]--; for (register int j = 0; j < FastFourierTransform::n; j++) b[j] = Complex(l[j], r[j]); fft(b, FastFourierTransform::n, 1); for (register int i = 0, j; i < FastFourierTransform::n; i++) { j = (FastFourierTransform::n - i) & (FastFourierTransform::n - 1), a[i] = (b[i] * b[i] - (b[j] * b[j]).conj()) * Complex(0, -0.25); } fft(a, FastFourierTransform::n, -1); for (register int j = st[i]; j <= ed[i]; j++) ans += ((long)(a[2 * num[j]].r + 0.5)); for (register int j = st[i]; j <= ed[i]; j++) { for (register int k = st[i]; k < j; k++) if (2 * num[j] - num[k] >= 0) ans += r[2 * num[j] - num[k]]; for (register int k = j + 1; k <= ed[i]; k++) if (2 * num[j] - num[k] >= 0) ans += l[2 * num[j] - num[k]]; l[num[j]]++; } } print(ans); } }
int main() { #ifndef ONLINE_JUDGE freopen("in.in", "r", stdin); #endif register int n, num1; read(n), read(num1); if ((n <= 100000 && num1 <= 50 && num1 != 1) || (n <= 5000)) { Concurrent::concurrentSolve(n, num1); } else { FastFourierTransform::solve(n, num1); } flush(); return 0; }
|