「BZOJ 3589」动态树-树链剖分 + 容斥

维护一棵树,子树修改,询问 $k$ 条链并的权值和。

链接

BZOJ 3589

题解

据说此题可以用 Top Tree,然而并不会...

对于子树修改,设 $u$ 的子树权值都增加 $x$,$v$ 在 $u$ 的子树中,那么对 $v$ 到根的链的权值和会带来 $(dep_v - dep_u + 1)x$ 的贡献,于是我们直接用线段树 + dfs 序维护就好了。

对于询问,考虑容斥,我们可以转化链的交,对于多条链交,我们可以先求两条链的交,然后再和第三条链交…

考虑如何求两条链的交:
设两条链为 (a, b)(c, d),其中 $b$ 是 $a$ 的父亲,$d$ 是 $c$ 的父亲,令其交为 (u, v),$v$ 是 $u$ 的父亲。

若 $dep_{lca(a, c)} < dep_b$ 或 $dep_{lca(a, c)} < dep_d$,那么显然交集为空。
否则 $u = lca(a, c)$。若 $dep_b > dep_d$,$v = b$,否则 $v = d$。

时间复杂度为 $O(q2 ^ kk \log n + q \log ^ 2 n)$。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/**
* Copyright (c) 2017, xehoth
* All rights reserved.
* 「BZOJ 3589」动态树 23-08-2017
* 树链剖分 + 容斥
* @author xehoth
*/
#include <bits/stdc++.h>
namespace IO {
inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}
template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
}
const int OUT_LEN = 1000000;
char obuf[OUT_LEN], *oh = obuf;
inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}
template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}
inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}
namespace HeavyLightChainDecomposition {
const int MAXN = 200000;
const int MAX_PATH = 5;
int n;
std::vector<int> edge[MAXN + 1];
inline void addEdge(const int u, const int v) {
edge[u].push_back(v), edge[v].push_back(u);
}
typedef std::vector<int>::iterator Iterator;
int sz[MAXN + 1], dep[MAXN + 1], fa[MAXN + 1], idx;
int son[MAXN + 1], top[MAXN + 1], pos[MAXN + 1];
bool vis[MAXN + 1];
inline void dfs1(const int u) {
vis[u] = true, sz[u] = 1, dep[u] = dep[fa[u]] + 1;
for (Iterator it = edge[u].begin(); it != edge[u].end(); it++) {
if (!vis[*it]) {
fa[*it] = u, dfs1(*it), sz[u] += sz[*it];
sz[*it] > sz[son[u]] ? son[u] = *it : 0;
}
}
}
inline void dfs2(const int u) {
vis[u] = false, pos[u] = ++idx, top[u] = (u == son[fa[u]] ? top[fa[u]] : u);
for (Iterator it = edge[u].begin(); it != edge[u].end(); it++)
if (*it == son[u]) dfs2(*it);
for (Iterator it = edge[u].begin(); it != edge[u].end(); it++)
if (vis[*it]) dfs2(*it);
}
inline int lca(int u, int v) {
while (top[u] != top[v])
dep[top[u]] < dep[top[v]] ? v = fa[top[v]] : u = fa[top[u]];
return dep[u] < dep[v] ? u : v;
}
struct Node *null, *cur;
struct Node {
Node *lc, *rc;
int len, sum, add;
Node(int len = 0) : lc(null), rc(null), len(len), sum(0), add(0) {}
inline void maintain() { sum = lc->sum + rc->sum; }
inline void cover(const int add) {
if (this == null) return;
sum += len * add, this->add += add;
}
inline void pushDown() {
if (add) lc->cover(add), rc->cover(add), add = 0;
}
} pool[MAXN * 4 + 1], *root;
inline void init() {
cur = pool, null = new Node(), null->lc = null->rc = null;
}
inline void build(Node *&p, int l, int r) {
p = new Node(r - l + 1);
if (l == r) return;
register int mid = l + r >> 1;
build(p->lc, l, mid), build(p->rc, mid + 1, r);
}
inline void modify(Node *p, int l, int r, int s, int t, int v) {
if (s <= l && t >= r) {
p->cover(v);
return;
}
p->pushDown();
register int mid = l + r >> 1;
if (s <= mid) modify(p->lc, l, mid, s, t, v);
if (t > mid) modify(p->rc, mid + 1, r, s, t, v);
p->maintain();
}
inline int query(Node *p, int l, int r, int s, int t) {
if (s <= l && t >= r) return p->sum;
p->pushDown();
register int mid = l + r >> 1;
register int ret = 0;
if (s <= mid) ret += query(p->lc, l, mid, s, t);
if (t > mid) ret += query(p->rc, mid + 1, r, s, t);
p->maintain();
return ret;
}
inline void intersect(int &u, int &v, int x, int y) {
if (u == 0) return;
if (u == -1) {
u = x, v = y;
return;
}
register int l = lca(u, x);
if (dep[l] < dep[v] || dep[l] < dep[y]) {
u = v = 0;
return;
}
u = l;
if (dep[v] < dep[y]) v = y;
}
int que[MAX_PATH + 1][2], k;
inline int query(int u, int v) {
if (u < 1) return 0;
register int ret = 0;
while (top[u] != top[v])
ret += query(root, 1, n, pos[top[u]], pos[u]), u = fa[top[u]];
return ret + query(root, 1, n, pos[v], pos[u]);
}
inline void dfs(int x, int u, int v, int type, int &ans) {
intersect(u, v, que[x][0], que[x][1]);
type ? ans += query(u, v) : ans -= query(u, v);
for (x++; x <= k; x++) dfs(x, u, v, type ^ 1, ans);
}
inline void query() {
using namespace IO;
for (register int i = 1; i <= k; i++) {
read(que[i][0]), read(que[i][1]);
if (dep[que[i][0]] < dep[que[i][1]]) std::swap(que[i][0], que[i][1]);
}
register int ans = 0;
for (register int i = 1; i <= k; i++) dfs(i, -1, -1, 1, ans);
print(ans < 0 ? ans + INT_MAX + 1 : ans), print('\n');
}
inline void solve() {
using namespace IO;
register int q, cmd;
read(n);
for (register int i = 1, u, v; i < n; i++) read(u), read(v), addEdge(u, v);
dfs1(1), dfs2(1), init(), build(root, 1, n);
register int l, r;
for (read(q); q--;) {
read(cmd);
switch (cmd) {
case 0:
read(l), read(r);
modify(root, 1, n, pos[l], pos[l] + sz[l] - 1, r);
break;
case 1:
read(k), query();
break;
}
}
}
}
int main() {
HeavyLightChainDecomposition::solve();
IO::flush();
return 0;
}
分享到