1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
#include <assert.h> #include <stdio.h>
#include <cuda_runtime.h>
#include <helper_cuda.h> #include <helper_functions.h>
template <int BLOCK_SIZE> __global__ void matrixMulCUDA(float *C, float *A, float *B, int wA, int wB) { int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int aBegin = wA * BLOCK_SIZE * by;
int aEnd = aBegin + wA - 1;
int aStep = BLOCK_SIZE;
int bBegin = BLOCK_SIZE * bx;
int bStep = BLOCK_SIZE * wB;
float Csub = 0;
for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
As[ty][tx] = A[a + wA * ty + tx]; Bs[ty][tx] = B[b + wB * ty + tx];
__syncthreads();
#pragma unroll
for (int k = 0; k < BLOCK_SIZE; ++k) { Csub += As[ty][k] * Bs[k][tx]; }
__syncthreads(); }
int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; C[c + wB * ty + tx] = Csub; }
__global__ void matrixMulCUDA_NonShared(float *C, float *A, float *B, int wA, int wB) { int x = blockIdx.x * blockDim.x + threadIdx.x; int y = blockIdx.y * blockDim.y + threadIdx.y;
float sum = 0.0f; for (int i = 0; i < wA; ++i) { sum += A[x * wA + i] * B[i * wB + y]; } C[y * wB + x] = sum; }
void constantInit(float *data, int size, float val) { for (int i = 0; i < size; ++i) { data[i] = val; } }
int matrixMultiply(int argc, char **argv, int block_size, dim3 &dimsA, dim3 &dimsB) { unsigned int size_A = dimsA.x * dimsA.y; unsigned int mem_size_A = sizeof(float) * size_A; float *h_A = (float *)malloc(mem_size_A); unsigned int size_B = dimsB.x * dimsB.y; unsigned int mem_size_B = sizeof(float) * size_B; float *h_B = (float *)malloc(mem_size_B);
const float valB = 0.01f; constantInit(h_A, size_A, 1.0f); constantInit(h_B, size_B, valB);
float *d_A, *d_B, *d_C;
dim3 dimsC(dimsB.x, dimsA.y, 1); unsigned int mem_size_C = dimsC.x * dimsC.y * sizeof(float); float *h_C = (float *)malloc(mem_size_C);
if (h_C == NULL) { fprintf(stderr, "Failed to allocate host matrix C!\n"); exit(EXIT_FAILURE); }
cudaError_t error;
error = cudaMalloc((void **)&d_A, mem_size_A);
if (error != cudaSuccess) { printf("cudaMalloc d_A returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit(EXIT_FAILURE); }
error = cudaMalloc((void **)&d_B, mem_size_B);
if (error != cudaSuccess) { printf("cudaMalloc d_B returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit(EXIT_FAILURE); }
error = cudaMalloc((void **)&d_C, mem_size_C);
if (error != cudaSuccess) { printf("cudaMalloc d_C returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit(EXIT_FAILURE); }
error = cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice);
if (error != cudaSuccess) { printf("cudaMemcpy (d_A,h_A) returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit(EXIT_FAILURE); }
error = cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice);
if (error != cudaSuccess) { printf("cudaMemcpy (d_B,h_B) returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit(EXIT_FAILURE); }
dim3 threads(block_size, block_size); dim3 grid(dimsB.x / threads.x, dimsA.y / threads.y);
printf("Computing result using CUDA Kernel...\n");
if (block_size == 16) { matrixMulCUDA<16><<<grid, threads>>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } else { matrixMulCUDA<32><<<grid, threads>>>(d_C, d_A, d_B, dimsA.x, dimsB.x); }
printf("done\n");
cudaDeviceSynchronize();
cudaEvent_t start; error = cudaEventCreate(&start);
if (error != cudaSuccess) { fprintf(stderr, "Failed to create start event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); }
cudaEvent_t stop; error = cudaEventCreate(&stop);
if (error != cudaSuccess) { fprintf(stderr, "Failed to create stop event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); }
error = cudaEventRecord(start, NULL);
if (error != cudaSuccess) { fprintf(stderr, "Failed to record start event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); }
int nIter = 3;
for (int j = 0; j < nIter; j++) {
if (block_size == 16) { matrixMulCUDA<16> <<<grid, threads>>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } else { matrixMulCUDA<32> <<<grid, threads>>>(d_C, d_A, d_B, dimsA.x, dimsB.x); } }
error = cudaEventRecord(stop, NULL);
if (error != cudaSuccess) { fprintf(stderr, "Failed to record stop event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); }
error = cudaEventSynchronize(stop);
if (error != cudaSuccess) { fprintf(stderr, "Failed to synchronize on the stop event (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); }
float msecTotal = 0.0f; error = cudaEventElapsedTime(&msecTotal, start, stop);
if (error != cudaSuccess) { fprintf(stderr, "Failed to get time elapsed between events (error code %s)!\n", cudaGetErrorString(error)); exit(EXIT_FAILURE); }
float msecPerMatrixMul = msecTotal / nIter; double flopsPerMatrixMul = 2.0 * (double)dimsA.x * (double)dimsA.y * (double)dimsB.x; double gigaFlops = (flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f); printf( "Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops, " "WorkgroupSize= %u threads/block\n", gigaFlops, msecPerMatrixMul, flopsPerMatrixMul, threads.x * threads.y);
error = cudaMemcpy(h_C, d_C, mem_size_C, cudaMemcpyDeviceToHost);
if (error != cudaSuccess) { printf("cudaMemcpy (h_C,d_C) returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); exit(EXIT_FAILURE); }
printf("Checking computed result for correctness: "); bool correct = true;
double eps = 1.e-6;
for (int i = 0; i < (int)(dimsC.x * dimsC.y); i++) { double abs_err = fabs(h_C[i] - (dimsA.x * valB)); double dot_length = dimsA.x; double abs_val = fabs(h_C[i]); double rel_err = abs_err / abs_val / dot_length;
if (rel_err > eps) { printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > %E\n", i, h_C[i], dimsA.x * valB, eps); correct = false; } }
printf("%s\n", correct ? "Result = PASS" : "Result = FAIL");
free(h_A); free(h_B); free(h_C); cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
printf( "\nNOTE: The CUDA Samples are not meant for performance measurements. " "Results may vary when GPU Boost is enabled.\n");
if (correct) { return EXIT_SUCCESS; } else { return EXIT_FAILURE; } }
int main(int argc, char **argv) { printf("[Matrix Multiply Using CUDA] - Starting...\n");
int devID = 0;
cudaError_t error; cudaDeviceProp deviceProp; error = cudaGetDevice(&devID);
if (error != cudaSuccess) { printf("cudaGetDevice returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); }
error = cudaGetDeviceProperties(&deviceProp, devID);
if (deviceProp.computeMode == cudaComputeModeProhibited) { fprintf(stderr, "Error: device is running in <Compute Mode Prohibited>, no threads can use ::cudaSetDevice().\n"); exit(EXIT_SUCCESS); }
if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error %s (code %d), line(%d)\n", cudaGetErrorString(error), error, __LINE__); } else { printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, deviceProp.name, deviceProp.major, deviceProp.minor); }
int block_size = (deviceProp.major < 2) ? 16 : 32;
for (int width = 256; width <= 2048; width += 256) { dim3 dimsA(width, width, 1); dim3 dimsB(width, width, 1);
if (checkCmdLineFlag(argc, (const char **)argv, "wA")) { dimsA.x = getCmdLineArgumentInt(argc, (const char **)argv, "wA"); }
if (checkCmdLineFlag(argc, (const char **)argv, "hA")) { dimsA.y = getCmdLineArgumentInt(argc, (const char **)argv, "hA"); }
if (checkCmdLineFlag(argc, (const char **)argv, "wB")) { dimsB.x = getCmdLineArgumentInt(argc, (const char **)argv, "wB"); }
if (checkCmdLineFlag(argc, (const char **)argv, "hB")) { dimsB.y = getCmdLineArgumentInt(argc, (const char **)argv, "hB"); }
if (dimsA.x != dimsB.y) { printf("Error: outer matrix dimensions must be equal. (%d != %d)\n", dimsA.x, dimsB.y); exit(EXIT_FAILURE); }
printf("MatrixA(%d,%d), MatrixB(%d,%d)\n", dimsA.x, dimsA.y, dimsB.x, dimsB.y);
int matrix_result = matrixMultiply(argc, argv, block_size, dimsA, dimsB); } exit(0); }
|