「HDU 3709」Balanced Number-数位 dp

求 $[l, r]$ 中平衡数的个数,平衡数就是一某一位为支点,两侧的力矩相等。

链接

HDU 3709

题解

显然是数位 DP,先看数据范围 $T \leq 30, 0 \leq l \leq r \leq 10 ^ {18}$,直接并不好做。

我们发现支点的位置不会超过 $18$ 个,所以我们可以枚举支点的位置,在做数位 DP 记忆化搜索的时候,记录下两侧力矩之和即可。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/**
* Copyright (c) 2017, xehoth
* All rights reserved.
* 「HDU 3709」Balanced Number 26-09-2017
* 数位 dp
* @author xehoth
*/
#include <bits/stdc++.h>

namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (iosig = false, c = read(); !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = x * 10 + (c ^ '0');
iosig ? x = -x : 0;
}

inline int read(char *buf) {
register int s = 0;
register char c;
while (c = read(), isspace(c) && c != -1)
;
if (c == -1) {
*buf = 0;
return -1;
}
do
buf[s++] = c;
while (c = read(), !isspace(c) && c != -1);
buf[s] = 0;
return s;
}

const int OUT_LEN = 10000000;

char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void print(const char *s) {
for (; *s; s++) print(*s);
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }

struct InputOutputStream {
template <typename T>
inline InputOutputStream &operator>>(T &x) {
read(x);
return *this;
}

template <typename T>
inline InputOutputStream &operator<<(const T &x) {
print(x);
return *this;
}

~InputOutputStream() { flush(); }
} io;
}

namespace {

#define long long long

using IO::io;

int digit[20];
long f[20][20][9 * 9 * 9 * 2 + 1];

inline long dfs(int pos, int now, int sum, int limit) {
if (sum < 0) return 0;
if (pos < 1) return sum == 0;
if (!limit && f[pos][now][sum] != -1) return f[pos][now][sum];
register int end = limit ? digit[pos] : 9;
register long ret = 0;
for (register int i = 0; i <= end; i++)
ret += dfs(pos - 1, now, sum + (pos - now) * i, limit && i == end);
return !limit ? f[pos][now][sum] = ret : ret;
}

inline long solve(long x) {
if (x < 0) return 0;
register int len = 0;
for (; x; x /= 10) digit[++len] = x % 10;
register long ret = 0;
for (register int i = 1; i <= len; i++) ret += dfs(len, i, 0, 1);
return ret - len + 1;
}

inline void solve() {
register int T;
io >> T;
memset(f, -1, sizeof(f));
for (register long l, r; T--;) {
io >> l >> r;
io << solve(r) - solve(l - 1) << '\n';
}
}
#undef long
}

int main() {
solve();
return 0;
}
#

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×