1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
#include <bits/stdc++.h>
namespace IO {
inline char read() { static const int IN_LEN = 1000000; static char buf[IN_LEN], *s, *t; s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0; return s == t ? -1 : *s++; }
template <typename T> inline void read(T &x) { static char c; static bool iosig; for (c = read(), iosig = false; !isdigit(c); c = read()) { if (c == -1) return; c == '-' ? iosig = true : 0; } for (x = 0; isdigit(c); c = read()) x = x * 10 + (c ^ '0'); iosig ? x = -x : 0; }
inline void read(char &c) { while (c = read(), isspace(c) && c != -1) ; }
inline int read(char *buf) { register int s = 0; register char c; while (c = read(), isspace(c) && c != -1) ; if (c == -1) { *buf = 0; return -1; } do buf[s++] = c; while (c = read(), !isspace(c) && c != -1); buf[s] = 0; return s; }
const int OUT_LEN = 1000000; char obuf[OUT_LEN], *oh = obuf;
inline void print(char c) { oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0; *oh++ = c; }
template <typename T> inline void print(T x) { static int buf[30], cnt; if (x == 0) { print('0'); } else { x < 0 ? (print('-'), x = -x) : 0; for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48; while (cnt) print((char)buf[cnt--]); } }
inline void print(const char *s) { for (; *s; s++) print(*s); }
inline void print(double x) { static char buf[40]; sprintf(buf, "%.8f", x); print((const char *)buf); }
inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
struct InputOutputStream { template <typename T> inline InputOutputStream &operator>>(T &x) { read(x); return *this; } template <typename T> inline InputOutputStream &operator<<(const T &x) { print(x); return *this; } ~InputOutputStream() { flush(); } } io; }
namespace {
using IO::io; const double EPS = 1e-8; const double INVERSIVE_RADIUS = 10.0; const double INVERSIVE_RADIUS2 = INVERSIVE_RADIUS * INVERSIVE_RADIUS;
struct Point { double x, y;
Point(double x = 0, double y = 0) : x(x), y(y) {}
inline void read() { static int t; io >> t, x = t, io >> t, y = t; }
inline Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
inline double operator*(const Point &p) const { return y * p.x - x * p.y; }
inline Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
inline Point operator*(const double d) const { return Point(x * d, y * d); }
inline Point operator/(const double d) const { return Point(x / d, y / d); }
inline double dis(const Point &p) const { return sqrt((x - p.x) * (x - p.x) + (y - p.y) * (y - p.y)); }
inline Point rotate(double a, double r) { return Point(x + r * cos(a), y + r * sin(a)); } };
struct Circle { double r; Point o;
Circle(double x = 0, double y = 0, double r = 0) : o(x, y), r(r) {}
inline void read() { static int t; o.read(), io >> t, r = t; }
inline void print() { io << o.x << ' ' << o.y << ' ' << r << '\n'; } };
inline int sign(double x) { return (x > EPS) - (x < -EPS); }
struct Task { int tot; Circle c[5]; Point P;
inline Circle inversive(const Circle &c1) { Circle res; register double oc1 = P.dis(c1.o); register double k1 = 1.0 / (oc1 - c1.r); register double k2 = 1.0 / (oc1 + c1.r); res.r = 0.5 * (k1 - k2) * INVERSIVE_RADIUS2; register double oc2 = 0.5 * (k1 + k2) * INVERSIVE_RADIUS2; res.o = P + (c1.o - P) * oc2 / oc1; return res; }
inline void save(const Point &a, const Point &b) { tot++; register double t = fabs(((P - a) * (b - a)) / a.dis(b)); c[tot].r = INVERSIVE_RADIUS2 / (2.0 * t); register double d = a.dis(c[1].o); c[tot].o = P + (a - c[1].o) * (c[tot].r / d); }
inline void solveCase() { c[1] = inversive(c[1]), c[2] = inversive(c[2]); if (c[1].r < c[2].r) std::swap(c[1], c[2]);
Point tmp = c[2].o - c[1].o; register double a1 = atan2(tmp.y, tmp.x); register double a2 = acos((c[1].r - c[2].r) / c[1].o.dis(c[2].o)); Point P1 = c[1].o.rotate(a1 + a2, c[1].r); Point P2 = c[2].o.rotate(a1 + a2, c[2].r); if (sign((c[1].o - P1) * (P2 - P1)) == sign((P - P1) * (P2 - P1))) save(P1, P2); P1 = c[1].o.rotate(a1 - a2, c[1].r); P2 = c[2].o.rotate(a1 - a2, c[2].r); if (sign((c[1].o - P1) * (P2 - P1)) == sign((P - P1) * (P2 - P1))) save(P1, P2); }
inline void solve() { register int T; io >> T; while (T--) { tot = 2, c[1].read(), c[2].read(), P.read(); solveCase(); io << tot - 2 << '\n'; for (register int i = 3; i <= tot; i++) c[i].print(); } } } task; }
int main() { task.solve(); return 0; }
|