1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
#include <bits/stdc++.h>
namespace {
const double EPS = 1e-6; const int MAXN = 40010; const int MAXM = MAXN * 2; const double PI2 = M_PI * 2;
int n, k;
template <typename T> inline T square(const T &x) { return x * x; }
struct Point { double x, y; int id; Point(double x = 0, double y = 0, int id = -1) : x(x), y(y), id(id) {}
inline bool operator<(const Point &a) const { return x < a.x || (fabs(x - a.x) < EPS && y < a.y); }
inline bool operator==(const Point &a) const { return fabs(x - a.x) < EPS && fabs(y - a.y) < EPS; }
inline double dist2(const Point &a) { return (x - a.x) * (x - a.x) + (y - a.y) * (y - a.y); }
inline Point operator-(const Point &p) const { return Point(x - p.x, y - p.y); }
inline double dis(const Point &p) const { return sqrt(square(x - p.x) + square(y - p.y)); } inline Point operator+(const Point &p) const { return Point(x + p.x, y + p.y); }
inline double operator*(const Point &p) const { return x * p.y - y * p.x; }
inline Point operator*(const double i) const { return Point(x * i, y * i); }
inline double operator^(const Point &p) const { return x * p.x + y * p.y; }
inline Point operator/(const double i) const { return Point(x / i, y / i); } };
namespace Delaunay {
struct Point3D { double x, y, z;
Point3D(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {} Point3D(const Point &p) { x = p.x, y = p.y, z = p.x * p.x + p.y * p.y; }
inline Point3D operator-(const Point3D &a) const { return Point3D(x - a.x, y - a.y, z - a.z); } inline double dot(const Point3D &a) { return x * a.x + y * a.y + z * a.z; } };
struct Edge { int id; std::list<Edge>::iterator c; Edge(int id = 0) { this->id = id; } };
inline int cmp(double v) { return fabs(v) > EPS ? (v > 0 ? 1 : -1) : 0; }
inline double cross(const Point &o, const Point &a, const Point &b) { return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x); }
inline Point3D cross(const Point3D &a, const Point3D &b) { return Point3D(a.y * b.z - a.z * b.y, -a.x * b.z + a.z * b.x, a.x * b.y - a.y * b.x); }
inline int inCircle(const Point &a, Point b, Point c, const Point &p) { if (cross(a, b, c) < 0) std::swap(b, c); Point3D a3(a), b3(b), c3(c), p3(p); b3 = b3 - a3, c3 = c3 - a3, p3 = p3 - a3; Point3D f = cross(b3, c3); return cmp(p3.dot(f)); }
inline int intersection(const Point &a, const Point &b, const Point &c, const Point &d) { return cmp(cross(a, c, b)) * cmp(cross(a, b, d)) > 0 && cmp(cross(c, a, d)) * cmp(cross(c, d, b)) > 0; }
class Delaunay { public: std::list<Edge> head[MAXN]; Point p[MAXN]; int n, rename[MAXN];
inline void init(int n, Point *p) { memcpy(this->p, p, sizeof(Point) * n); std::sort(this->p, this->p + n); for (register int i = 0; i < n; i++) rename[p[i].id] = i; this->n = n; divide(0, n - 1); }
inline void addEdge(int u, int v) { head[u].push_front(Edge(v)); head[v].push_front(Edge(u)); head[u].begin()->c = head[v].begin(); head[v].begin()->c = head[u].begin(); }
void divide(int l, int r) { if (r - l <= 2) { for (register int i = l; i <= r; i++) for (register int j = i + 1; j <= r; j++) addEdge(i, j); return; } register int mid = (l + r) / 2; divide(l, mid), divide(mid + 1, r);
std::list<Edge>::iterator it; register int nowl = l, nowr = r; for (register int update = 1; update;) { update = 0; Point ptL = p[nowl], ptR = p[nowr]; for (it = head[nowl].begin(); it != head[nowl].end(); it++) { Point t = p[it->id]; register double v = cross(ptR, ptL, t); if (cmp(v) > 0 || (cmp(v) == 0 && ptR.dist2(t) < ptR.dist2(ptL))) { nowl = it->id, update = 1; break; } } if (update) continue; for (it = head[nowr].begin(); it != head[nowr].end(); it++) { Point t = p[it->id]; register double v = cross(ptL, ptR, t); if (cmp(v) < 0 || (cmp(v) == 0 && ptL.dist2(t) < ptL.dist2(ptR))) { nowr = it->id, update = 1; break; } } }
addEdge(nowl, nowr); for (;;) { Point ptL = p[nowl], ptR = p[nowr]; register int ch = -1, side = 0; for (it = head[nowl].begin(); it != head[nowl].end(); it++) { if (cmp(cross(ptL, ptR, p[it->id])) > 0 && (ch == -1 || inCircle(ptL, ptR, p[ch], p[it->id]) < 0)) ch = it->id, side = -1; } for (it = head[nowr].begin(); it != head[nowr].end(); it++) { if (cmp(cross(ptR, p[it->id], ptL)) > 0 && (ch == -1 || inCircle(ptL, ptR, p[ch], p[it->id]) < 0)) ch = it->id, side = 1; } if (ch == -1) break; if (side == -1) { for (it = head[nowl].begin(); it != head[nowl].end();) { if (intersection(ptL, p[it->id], ptR, p[ch])) { head[it->id].erase(it->c); head[nowl].erase(it++); } else it++; } nowl = ch, addEdge(nowl, nowr); } else { for (it = head[nowr].begin(); it != head[nowr].end();) { if (intersection(ptR, p[it->id], ptL, p[ch])) { head[it->id].erase(it->c), head[nowr].erase(it++); } else { it++; } } nowr = ch, addEdge(nowl, nowr); } } }
inline bool parallel(const Point &a, const Point &b, const Point &c) { return fabs((b - a) * (c - a)) < EPS; }
inline void getEdge(std::vector<std::pair<int, int> > &ret) { ret.reserve(n); std::list<Edge>::iterator it, itp; std::set<std::pair<int, int> > vis; for (register int i = 0; i < n; i++) { for (it = head[i].begin(); it != head[i].end(); it++) { if (it->id < i) continue; Point now = p[it->id]; for (itp = head[i].begin(); itp != head[i].end(); ++itp) { if (itp->id < i) continue; if (parallel(p[i], p[it->id], p[itp->id]) && p[itp->id].dist2(p[i]) < now.dist2(p[i])) { now = p[itp->id]; } } if (vis.find(std::make_pair(p[i].id, now.id)) == vis.end()) { vis.insert(std::make_pair(p[i].id, now.id)); ret.push_back(std::make_pair(p[i].id, now.id)); } } } } }; }
namespace PlanarGraph {
Point p[MAXN];
struct Edge { int u, v; double angle;
Edge(int u, int v) : u(u), v(v) { angle = atan2(p[v - 1].y - p[u - 1].y, p[v - 1].x - p[u - 1].x); if (angle < 0) angle += PI2; }
Edge() {} } edge[MAXM];
bool vis[MAXM + 1]; int regionCnt, infArea, rank[MAXM + 1], near[MAXM + 1];
std::vector<int> et[MAXN + 1]; std::vector<Edge> vc[MAXN];
inline void findRegion(int x, int id) { if (vis[id]) return; double area = 0; while (!vis[id]) { area += p[x - 1] * p[edge[id].v - 1]; vis[id] = true, near[id] = regionCnt, x = edge[id].v; vc[regionCnt].push_back(edge[id]); if (!rank[id ^ 1]) id = et[x].back(); else id = et[x][rank[id ^ 1] - 1]; } if (area < 0) infArea = regionCnt; regionCnt++; }
inline void findDualGraph(const int n, const int m) { static std::pair<double, int> tmp[MAXM + 1]; for (register int i = 0; i != m << 1; i++) tmp[i] = std::make_pair(edge[i].angle, i); std::sort(tmp, tmp + (m << 1)); for (int i = 0, id; i != m << 1; i++) { id = tmp[i].second; const Edge &e = edge[id]; rank[id] = et[e.u].size(), et[e.u].push_back(id); } for (register int i = 1; i <= n; i++) for (register int j = 0; j != (int)et[i].size(); j++) findRegion(i, et[i][j]); } }
namespace Voronoi {
Delaunay::Delaunay delaunay;
PlanarGraph::Edge vorE[MAXM];
struct Line { Point s, t;
Line(const Point &s, const Point &t) : s(s), t(t) {} inline Point intersect(const Line &l) const { return s + (t - s) * (((s - l.s) * (l.t - l.s)) / ((l.t - l.s) * (t - s))); }
inline Line getPerpendicularBisector() { return Line( Point((s.x + t.x) / 2, (s.y + t.y) / 2), Point((s.x + t.x) / 2 + s.y - t.y, (s.y + t.y) / 2 + t.x - s.x)); } };
struct Cmp { inline bool operator()(const std::pair<double, double> &a, const std::pair<double, double> &b) const { if (fabs(a.first - b.first) < EPS) { if (fabs(a.second - b.second) < EPS) return false; return a.second < b.second; } return a.first < b.first; } };
const double INF = 1e7;
inline void insert(PlanarGraph::Edge *p1, PlanarGraph::Edge *p2, std::set<std::pair<double, double>, Cmp> &ret) { if (!(fabs((PlanarGraph::p[p1->v - 1] - PlanarGraph::p[p1->u - 1]) * (PlanarGraph::p[p2->v - 1] - PlanarGraph::p[p2->u - 1])) < EPS)) { Point o = Line(PlanarGraph::p[p1->u - 1], PlanarGraph::p[p1->v - 1]) .getPerpendicularBisector() .intersect(Line(PlanarGraph::p[p2->u - 1], PlanarGraph::p[p2->v - 1]) .getPerpendicularBisector());
if (fabs(o.x) <= INF && fabs(o.y) <= INF && !isinf(o.x) && !isnan(o.x) && !isinf(o.y) && !isnan(o.y)) { ret.insert(std::make_pair(o.x, o.y)); } } }
inline void getCenter(std::set<std::pair<double, double>, Cmp> &ret, int i) { PlanarGraph::Edge *p1 = &PlanarGraph::vc[i][0], *p2 = &PlanarGraph::vc[i].back(); insert(p1, p2, ret); if (i == PlanarGraph::infArea) return; for (register int j = 0; j < (int)PlanarGraph::vc[i].size() - 1; j++) { p1 = &PlanarGraph::vc[i][j], p2 = &PlanarGraph::vc[i][j + 1]; insert(p1, p2, ret); } }
inline void buildVoronoi() { delaunay.init(n, PlanarGraph::p); std::vector<std::pair<int, int> > edge; delaunay.getEdge(edge); register int m = edge.size();
for (register int i = 0; i < m; i++) { if (edge[i].first > edge[i].second) std::swap(edge[i].first, edge[i].second); PlanarGraph::edge[i << 1] = PlanarGraph::Edge(edge[i].first + 1, edge[i].second + 1); PlanarGraph::edge[i << 1 | 1] = PlanarGraph::Edge(edge[i].second + 1, edge[i].first + 1); }
PlanarGraph::findDualGraph(n, m);
for (register int i = 0, a; i != m; i++) { a = i << 1; vorE[i].u = PlanarGraph::near[a]; vorE[i].v = PlanarGraph::near[a ^ 1]; } static int deg[MAXN + 1]; for (register int i = 0; i < m; i++) deg[vorE[i].u]++, deg[vorE[i].v]++; std::set<std::pair<double, double>, Cmp> ans; for (register int i = 0; i < PlanarGraph::regionCnt; i++) { if (deg[i] >= k) getCenter(ans, i); } std::cout << ans.size() << '\n'; for (std::set<std::pair<double, double>, Cmp>::iterator it = ans.begin(); it != ans.end(); ++it) { std::cout << std::fixed << std::setprecision(4) << it->first << ' ' << it->second << '\n'; } } }
inline void solve() { std::cin >> n >> k; for (register int i = 0; i < n; i++) { std::cin >> PlanarGraph::p[i].x >> PlanarGraph::p[i].y; PlanarGraph::p[i].id = i; } Voronoi::buildVoronoi(); } }
int main() { std::ios::sync_with_stdio(false), std::cin.tie(NULL), std::cout.tie(NULL); solve(); return 0; }
|