给定一个长度为 $n$ 的字符串,你需要在任意位置添加尽量少的字符,使新串是回文串。输出最少添加的字符个数以及新串。
给定一个长度为 $n$ 的字符串,你需要在任意位置添加尽量少的字符,使新串是回文串。输出最少添加的字符个数以及新串。
有 $n$ 个仓库,让 $m$ 个人来看管。一个仓库只能由一个人来看管,一个人可以看管多个仓库。
每个人有一个能力值 $p_i$,如果他看管 $k$ 个仓库,那么所看管的每个仓库的安全值为 $\lfloor \frac {p_i} {k}\rfloor$
如果某个仓库没有人看管,那么它的安全值为 $0$。所有仓库的安全值 $L$ 为所有仓库安全值的最小值
如果雇佣一个人的工资等于他的能力值 $p_i$。
从 $m$ 个人中选择一些人雇佣,问所有仓库的安全值最高是多少,在安全值最高的情况下,求雇佣的最少价钱。
有一个 $n \times m$ 的矩阵,请你选出其中 $k$ 个子矩阵,使得这个 $k$ 个子矩阵分值之和最大。注意:选出的 $k$ 个子矩阵不能相互重叠。
给定一个初始集合和目标集合,有两种操作:
要求用最小步数使初始集合变为目标集合,求最小步数。
Pine 开始了从 $ S $ 地到 $ T $ 地的征途。
从 $ S $ 地到 $ T $ 地的路可以划分成 $ n $ 段,相邻两段路的分界点设有休息站。
Pine 计划用 $ m $ 天到达 $ T $ 地。除第 $ m $ 天外,每一天晚上 Pine 都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine 希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助 Pine 求出最小方差是多少。
设方差是 $ v $,可以证明,$ v \times m ^ 2 $ 是一个整数。为了避免精度误差,输出结果时输出 $ v \times m ^ 2 $。
P 教授有编号为 $1 \sim N$ 的 $N$ 件玩具,第 $i$ 玩具经过压缩后变成一维长度为 $C_i$ 为了方便整理,P 教授要求在一个一维容器中的玩具编号是连续的。如果将第 $i$ 件玩具到第 $j$ 个玩具放到一个容器中,那么容器的长度将为 $$x = j - i + \sum\limits_{k = i} ^ j C_k$$。如果容器长度为 $x$。其制作费用为 $(x - L) ^ 2$。其 $L$ 是一个常量。P 教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过 $L$。但他希望费用最小。
二维坐标系中有 $n$ 个矩形,第 $i$ 个矩形在水平方向上覆盖 $[l_i, r_i]$,在竖直方向上覆盖 $[i - 1, i]$,我们要水平移动这些矩形使得它们全部连通,水平移动的花费是移动的距离,求最小费用。
将 $n_1$ 个 $A$,$n_2$ 个 $B$,$n_3$ 个 $C$,$n_4$ 个 $D$ 排成一个序列。求问有多少种排列方案使得排成的序列任意相邻的两个字母不同。
给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。
对于一个非空集合{$a_i$},我们称一个集合是 $magical$ 的,当且仅当它满足以下两个条件。
1:$a_1$ & $a_2$ &…& $a_n$ =0(&表示 $and$)
2:{$a_i$} 的任意一个除它本身外的非空子集不满足1。
小 $A$ 有一个很大很大的集合。很显然这个集合的子集数量是一个天文数字。
小 $A$ 现在想要知道这个集合的 magical 的非空子集数量是多少。
为了防止不必要的麻烦,请将答案 $mod$ $1e9+7$ 后输出。
为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐。每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想,所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的位置就归第2批就餐的奶牛了。由于奶牛们不理解FJ的安排,晚饭前的排队成了一个大麻烦。
第i头奶牛有一张标明她用餐批次 D_i(1 <= D_i <= 3) 的卡片。虽然所有 N (1 <= N <= 30,000) 头奶牛排成了很整齐的队伍,但谁都看得出来,卡片上的号码是完全杂乱无章的。 在若干次混乱的重新排队后,FJ找到了一种简单些的方法:奶牛们不动,他沿着队伍从头到尾走一遍,把那些他认为排错队的奶牛卡片上的编号改掉,最终得到一个他想要的每个组中的奶牛都站在一起的队列,例如 111222333 或者 333222111。哦,你也发现了,FJ不反对一条前后颠倒的队列,那样他可以让所有奶牛向后转,然后按正常顺序进入餐厅。
你也晓得,FJ是个很懒的人。他想知道,如果他想达到目的,那么他最少得改多少头奶牛卡片上的编号。所有奶牛在FJ改卡片编号的时候,都不会挪位置。
Update your browser to view this website correctly. Update my browser now